The Effects of CO$_2$ on Phytoplankton Community Structure in the Amazon River Plume

Chen, Therese L.1, Goes, Joaquim I.2, Gomes, Helga2, McKee, Kali T.2

1Barnard College, Columbia University, New York, NY,
2Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY.

The Amazon River Plume, which results from an enormous discharge of freshwater and organic matter into the Atlantic Ocean, is a unique environment with a natural pCO$_2$ gradient in the surface waters of the plume that range from 130-950µatm. The response of coastal marine phytoplankton to increased anthropogenic CO$_2$ emission is still unknown, hence the Amazon River Plume gradient can serve as a natural laboratory to examine the potential influence of atmospheric CO$_2$ increases and ocean acidification on phytoplankton community composition. A two pronged study was undertaken: the first in which shipboard samples from a 2010 cruise to the Amazon River Plume were analyzed to examine the distribution of 3 major phytoplankton groups (diatoms, diatom-diazotroph associations [DDAs], and the diazotroph Trichodesmium spp.) with respect to the natural pCO$_2$ gradient; the second in which the growth responses of Thalassiosira weisflogii, a representative diatom species, were examined under experimentally manipulated CO$_2$ conditions. Differential growth was observed at 150, 400, and 800 ppm CO$_2$ treatments. Absorption spectra analysis of pigments and Fast Repetition Rate Fluorometer analysis indicate potential changes in photosynthetic machinery with different CO$_2$ treatments. Future CO$_2$ manipulation experiments on representative DDA and diazotroph species will be undertaken to compare the growth responses of these 3 major phytoplankton groups to changes in CO$_2$.