Proposed Oman Drilling Project

Summary of Results

science objectives & proposed sites
identified at Oman Drilling Workshop
Palisades NY, September 13-17, 2012

sponsored by International Continental Drilling Program (ICDP),
Sloan Foundation Deep Carbon Observatory (DCO)
US National Science Foundation (NSF)

Convener: Peter Kelemen
Arthur D. Storke Professor
Dept. of Earth & Environmental Sciences
Columbia University
New York, NY
Workshop on Scientific Drilling in the Samail Ophiolite, Sultanate of Oman (Oman Drilling Workshop)

Sponsored by:
International Continental Drilling Program (ICDP)
Sloan Foundation, Deep Carbon Observatory (DCO)
US National Science Foundation (NSF)
Coordinator: Karen Benedetto, Lamont Doherty Earth Observatory

Steering Committee

Ali Al Rajhi (Ass’t Director General of Minerals, Ministry of Commerce & Industry, Oman)
Marguerite Godard (Chargée de Recherche, Université de Montpellier II, France)
Benoit Ildefonse (Directeur de Recherche, Université de Montpellier II, France)
Peter Kelemen (Professor, Columbia University, USA)
Jürgen Koepke (Professor, Leibniz Universitaet, Germany)
Chris MacLeod (Professor, Cardiff University, UK)
Craig Manning (Chair, Dept. of Earth & Space Sciences, UCLA, USA)
Katsu Michibayashi (Professor, Shizuoka University, Japan)
Sobhi Nasir (Head, Dept. of Earth Sciences, Sultan Qaboos University, Oman)
Everett Shock (Professor, Arizona State University, USA)
Eiichi Takazawa (Professor, Niigata University, Japan)
Damon Teagle (Professor, University of Southampton, UK)
Distinguished participants:

His Excellency, Ambassador Adnan Al Ansari
Permanent Observer to the UN for the Cooperation Council of the Arab States of the Gulf

Dr. Sean Solomon
Director, Lamont Doherty Earth Observatory

Dr. Arthur Lerner-Lam
Associate Director, Lamont Doherty Earth Observatory
Original pre-proposal 1998
Approved for workshop by ICDP 2000
Mainly focused on formation and evolution of oceanic crust and mantle
Proponents had too many other projects 2000-2005, decided to postpone workshop and full proposal

Second proposal 2011
Approved for workshop by ICDP 2011
Includes previous goals, but also a major focus on ongoing alteration and weathering, carbon cycle, and subsurface biosphere

Planned full proposal to ICDP due January 15, 2013

Similar projects in the past:
Cyprus (Troodos) drilling program
Drilling in southern California Coast Ranges
The “Oman ophiolite” was formed during a collision of tectonic plates, which thrust oceanic crust and upper mantle onto the margin of the Arabian continent. This created

- deposits of copper, chrome and other commodities concentrated in oceanic plates
- a huge source of chemical potential energy, because the Earth’s mantle is not in equilibrium with the atmosphere and surface water, and
- a natural laboratory where scientists study creation and evolution of oceanic plates.

modified from Coleman, Ophiolites, Kluwer, 1977
Hydration of mantle rocks reacting with surface waters provides the optimal geological conditions for abiotic synthesis of hydrocarbons. Such an environment may have hosted the evolution of the earliest life on Earth.

McCollom et al. showed that hydration of mantle rocks produces ideal conditions for abiotic synthesis of complex hydrocarbons including alkanes and alkenes, as well as methane.
Ongoing mineral carbonation, by reaction of surface waters and atmospheric CO₂ with mantle rocks in the Oman ophiolite, forms spectacular travertine terraces, “blue pools” in the wadis, and related, subsurface carbonate veins. This consumes 10,000-100,000 tons of CO₂ per year. There is enough peridotite in the Oman ophiolite to solidify 33 trillion tons of CO₂, equal to the mass of human output for 1000 years (if present-day emission rates continue unchanged). Mineral carbonation could be accelerated to play an important role in mitigating greenhouse gas emissions. Two proposed methods are to (1) heat reacting rock volumes to about 185°C, where reaction rates are a million times faster, and/or (2) increase the flux of water circulating through the rocks via drilling and fracturing. In Oman, both methods would have the least impact using boreholes drilled from the shore into mantle rocks beneath the seafloor.

Images from Kelemen & Matter PNAS 2008
Hydration and carbonation of mantle rocks, where they are thrust over seafloor sediments in subduction zones, is thought to be essential for many aspects of plate tectonics and global geochemical cycling: lubricating fault zones, providing a source of H_2O and CO_2 for explosive volcanism, representing an overlooked but significant part of the global carbon cycle, and maintaining the volatile content and viscosity of the mantle. The processes of hydration and carbonation, especially at depths >10 km where cracks are ordinarily thought to be closed, are uncertain. Study of the basal thrust of the Oman ophiolite, where mantle rocks were thrust over oceanic sediments, will reveal the nature of these processes.
hydrated and carbonated mantle rocks
overlying the basal thrust
of the Oman ophiolite

Image from Kelemen et al. AREPS 2011
Interaction of the mantle with CO2-bearing fluids at about 200°C with a fluid pressure of about 3000 atmospheres (as happened about 80 million years ago in the mountain side shown on the previous slide) occurs at the optimal conditions for rapid mineral carbonation. 100% of the magnesium and calcium in these rocks – originally in solid silicates - was converted to solid carbonates, while the silica formed quartz. Fluid access and reaction continued because volume changes created new cracks, increasing permeability and reactive surface area.

100% carbonation is the goal of engineered mineral carbonation for carbon capture and storage. To design such systems, while avoiding the cost of grinding the rock reactants, we need to understand the natural mineral carbonation process, including reaction-driven cracking. Reaction-driven cracking could also be important in extracting unconventional hydrocarbon resources (shale gas, shale oil) and in creating fracture networks for geothermal power generation.
The lower oceanic crust forms from crystallization of igneous rocks in the subsurface beneath spreading centers, forming “plutonic” rocks called gabbros. The site of crystallization is poorly known. Does all of the crystallization occur in a “shallow melt lens” near the surface, where heat can be extracted efficiently, or do the gabbros crystallize in a series of stacked lenses, called sills, throughout the crust? Study of chemical variation and crystal orientation in the lower crust of the Oman ophiolite can resolve this question.

Crystallization of gabbros in a shallow melt lens requires rapid removal of heat by active hydrothermal convection in the upper crust. Crystallization of gabbros at a range of depths requires hydrothermal circulation extending to the base of the crust. Measurement of mineral zoning in Oman gabbros, interpreted in terms of cooling rates, will resolve which type of hydrothermal alteration and cooling was predominant.

Coogan et al. 2006

Garrido et al. 2001; VanTongeren et al. 2009
Oceanic crust is composed of igneous rocks. The magmas from which they crystallize forms due to partial melting of the mantle as it rises and decompresses beneath spreading centers, driven by the divergence of the tectonic plates on either side. The mechanism that drives focusing of the partial melts, to form igneous oceanic crust over a narrow region, just a few kilometers wide at the spreading center, is not well understood. Does this occur due to focused melt transport coalescing within a wide region of solid mantle upwelling, or as a result of highly focused solid upwelling? Study of melt transport veins and solid deformation structures in the mantle portions of the Oman ophiolite can resolve this question.

Nicolas & Violette 1982; Nicolas & Rabinowicz, 1984
geologic map shows five main sites for proposed drilling in red font

regional map of northern Oman, eastern UAE and Gulf of Oman
blocks of oceanic crust and upper mantle (the Oman ophiolite) are shown in grey

W. Kurah crust-mantle transect
W. Gideah crustal transect
basal thrust
active alteration
coastal peridotite (under cap rock)
geological cross-sections of Wadi Gideah and Wadi Kurah with possible drill sites in red
CaOH-rich water out at alkaline spring forming a travertine terrace

schematic illustration of proposed boreholes to study active, low temperature hydration and carbonation of mantle rocks

CROSS-SECTION

MgHCO₃ water in after interaction of rainwater with near surface mantle rocks

A: borehole(s) to sample end-member MgHCO₃ water

B: boreholes to sample reaction zone(s) transforming MgHCO₃ to CaOH water

C: borehole(s) to sample end-member CaOH water

red ovals: travertine terraces
dashed line: watershed ridge line
one possible site to study high temperature mantle hydration & carbonation which occurred at ~200°C & 3000 atmospheres above a subduction zone.
coast of Oman near Muscat where there are mantle rocks overlain by limestone cap rocks, with contact dipping offshore, illustrating structure at proposed shoreline drill site to the southeast, near Tiwi, to study subseafloor alteration of mantle rocks and evaluate a possible, future CO₂ injection site.

highly schematic design of shore-based system for combined subseafloor mineral carbonation in mantle rocks and geothermal power generation.
likely cost of wireline diamond drilling & coring: US$ 2.0 million

likely cost of scientific personnel, geophysical logging, and chemical analyses: US$ 4.0 million

likely cost of planned training of Omani students during all aspects of this project US$ 0.5 million

likely cost for use of core logging facilities onboard Research Vessel Joides Resolution (International Ocean Drilling Program, IODP) US$ 0.5 million

including shipment of core to vessel

alternatively, likely cost to recreate comparable core logging facilities in Oman, where this would become a legacy laboratory US$ 4.5 million

likely level of support from International Continental Drilling Program (ICDP), approx. 50% of drilling cost US$ 1.0 million

remainder to be raised from private foundations, national science foundations, international consortia US$ 5 to 9 million
Oman Drilling Workshop, Speakers

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muriel Andreani</td>
<td>Laboratoire de Géologie de Lyon, France</td>
<td>muriel.andreani@univ-lyon1.fr</td>
</tr>
<tr>
<td>Wolfgang Bach</td>
<td>University of Bremen, Germany</td>
<td>wbach@uni-bremen.de</td>
</tr>
<tr>
<td>Keir Becker</td>
<td>RSMAS, University of Miami, USA</td>
<td>kbecker@rsmas.miami.edu</td>
</tr>
<tr>
<td>Georges Ceuleneer</td>
<td>CNRS, Univ. Paul Sabatier, France</td>
<td>georges.ceuleneer@get.obs-mip.fr</td>
</tr>
<tr>
<td>Philippe Gouze</td>
<td>CNRS, Univ. Montpellier, II France</td>
<td>philippe.gouze@um2.fr</td>
</tr>
<tr>
<td>Benoit Ildefonse</td>
<td>CNRS, Univ. Montpellier II, France</td>
<td>ildefonse@um2.fr</td>
</tr>
<tr>
<td>Peter Kelemen</td>
<td>LDEO, Columbia University, USA</td>
<td>peterk@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Juergen Koepke</td>
<td>Leibniz Universitaet, Germany</td>
<td>koepke@mineralogie.uni-hannover.de</td>
</tr>
<tr>
<td>Jun Korenaga</td>
<td>Yale University, USA</td>
<td>jun.korenaga@yale.edu</td>
</tr>
<tr>
<td>Kerstin Lehnert</td>
<td>LDEO, Columbia University, USA</td>
<td>lehnert@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Christopher MacLeod</td>
<td>Cardiff University, UK</td>
<td>macleod@cardiff.ac.uk</td>
</tr>
<tr>
<td>Craig Manning</td>
<td>UCLA, USA</td>
<td>manning@ess.ucla.edu</td>
</tr>
<tr>
<td>Jürg Matter</td>
<td>LDEO, Columbia University, USA</td>
<td>jmatter@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Katsuyoshi Michibayashi</td>
<td>Shizuoka University, Japan</td>
<td>sekmich@ipc.shizuoka.ac.jp</td>
</tr>
<tr>
<td>Jay Miller</td>
<td>IODP, Texas A&M University, USA</td>
<td>miller@iodp.tamu.edu</td>
</tr>
<tr>
<td>Sobhi Nasir</td>
<td>Sultan Qaboos University, Oman</td>
<td>sobhi@squ.edu.om</td>
</tr>
<tr>
<td>Matt Schrenk</td>
<td>East Carolina University, USA</td>
<td>schrenkm@ecu.edu</td>
</tr>
<tr>
<td>Everett Shock</td>
<td>Arizona State University, USA</td>
<td>eshock@asu.edu</td>
</tr>
<tr>
<td>Rob Sohn</td>
<td>WHOI, USA</td>
<td>rsohn@whoi.edu</td>
</tr>
<tr>
<td>Marc Spiegelman</td>
<td>LDEO, Columbia University, USA</td>
<td>mspieg@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Eiichi Takazawa</td>
<td>Niigata University, Japan</td>
<td>takazawa@geo.sc.niigata-u.ac.jp</td>
</tr>
<tr>
<td>Damon Teagle</td>
<td>University of Southampton, UK</td>
<td>Damon.Teagle@southampton.ac.uk</td>
</tr>
<tr>
<td>Alexis Templeton</td>
<td>University of Colorado, USA</td>
<td>alexis.templeton@colorado.edu</td>
</tr>
<tr>
<td>Jill VanTongeren</td>
<td>Yale University, USA</td>
<td>jvantong@ldeo.columbia.edu</td>
</tr>
</tbody>
</table>
Oman Drilling Workshop, Participants

Ali Al Rajhi Ministry of Commerce & Industry, Oman aalrajhi@business.gov.om
Adnan Al Ansari GCC Ambassador to the UN dra797@hotmail.com
Jesse Ausubel DCO, Sloan Foundation, USA ausubel@mail.rockefeller.edu
Jim Beard National Science Foundation, USA jbeard@nsf.gov
Valérie Beaumont IFPEN Energies Nouvelles, France valerie.beaumont@ifpen.fr
Harry Becker Freie Universitaet Berlin, Germany hbecker@zedat.fu-berlin.de
Donna Blackman Scripps Institution of Oceanography, USA dblackman@ucsd.edu
Mathilde Cannat CNRS, Institut de Physique du Globe de Paris cannat@ipgp.fr
Dawn Cardace University of Rhode Island, USA cardace@uri.edu
Laura Crispini DIPTERIS, University of Genova, Italy crispini@dipteris.unige.it
Jake Eichenbaum-Pikser LDEO, Columbia University, USA jpiukser@gmail.com
Aida Farough Virginia Tech, USA afarough@vt.edu
Emanuele Fontana Università degli Studi di Milano, Italy emanuele.fontana@unimi.it
Marguerite Godard CNRS, Univ. Montpellier II mgodard@univ-montp2.fr
David Goldberg LDEO, Columbia University, USA goldberg@ldeo.columbia.edu
Steve Goldstein LDEO, Columbia University, USA steveg@ldeo.columbia.edu
George Harlow American Museum of Natural History, USA gharlow@amnh.org
Greg Hirth Brown University, USA greg_hirth@brown.edu
Bjorn Jamtveit PGP, University of Oslo, Norway bjorn.jamtveit@geo.uio.no
Kevin Johnson University of Hawaii, USA kjohnso2@hawaii.edu
Andreas Kronenberg Texas A&M University, USA kronenberg@geo.tamu.edu
Yuki Kusano Kanazawa University, Japan ykusano@staff.kanazawa-u.ac.jp
Art Lerner-Lam LDEO, Columbia University, USA lerner@ldeo.columbia.edu
Yongsheng Liu University of Geosciences (Wuhan), China yshliu@hotmail.com
Robert Lowell Virginia Tech, USA rlowell@vt.edu
Kate Maher Stanford University, USA kmaher@stanford.edu
Isabelle Martinez Institut de Physique du Globe de Paris martinez@ipgp.fr
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa Mayhew</td>
<td>University of Colorado – Boulder, USA</td>
<td>lisa.mayhew@colorado.edu</td>
</tr>
<tr>
<td>Andrew McCaig</td>
<td>University of Leeds, UK</td>
<td>a.m.mccaig@leeds.ac.uk</td>
</tr>
<tr>
<td>Diane Moore</td>
<td>U. S. Geological Survey, Menlo Park, USA</td>
<td>dmoore@usgs.gov</td>
</tr>
<tr>
<td>Tomo-aki Morishita</td>
<td>Kanazawa University, Japan</td>
<td>moripta@staff.kanazawa-u.ac.jp</td>
</tr>
<tr>
<td>Penny Morrill</td>
<td>Memorial University of Newfoundland, Canada</td>
<td>pmorrill@mun.ca</td>
</tr>
<tr>
<td>Antony Morris</td>
<td>University of Plymouth, UK</td>
<td>amorris@plymouth.ac.uk</td>
</tr>
<tr>
<td>H. Richard Naslund</td>
<td>SUNY Binghamton, USA</td>
<td>Naslund@binghamton.edu</td>
</tr>
<tr>
<td>Amelia Paukert</td>
<td>LDEO, Columbia University, USA</td>
<td>apaukert@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Oliver Pluemer</td>
<td>PGP, University of Oslo, Norway</td>
<td>oliver.pluemer@fys.uio.no</td>
</tr>
<tr>
<td>Mike Purdy</td>
<td>Columbia University, USA</td>
<td>mpurdy@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Matthew Rioux</td>
<td>UC Santa Barbara, USA</td>
<td>riouxm@mit.edu</td>
</tr>
<tr>
<td>Vincent Salters</td>
<td>NHMFL, Florida State University, USA</td>
<td>salters@magnet.fsu.edu</td>
</tr>
<tr>
<td>Cara Santelli</td>
<td>Smithsonian Institution, USA</td>
<td>santellic@si.edu</td>
</tr>
<tr>
<td>Tsutomu Sato</td>
<td>Hokkaido University, Japan</td>
<td>tomsato@eng.hokudai.ac.jp</td>
</tr>
<tr>
<td>Tim Schroeder</td>
<td>Bennington College, USA</td>
<td>esther11@vt.edu</td>
</tr>
<tr>
<td>Esther Schwarzenbach</td>
<td>Virginia Tech, USA</td>
<td>scs@dtm.ciw.edu</td>
</tr>
<tr>
<td>Sean Solomon</td>
<td>LDEO, Columbia University, USA</td>
<td>hstrauss@uni-muenster.de</td>
</tr>
<tr>
<td>Harald Strauss</td>
<td>Universität Münster, Germany</td>
<td>estreit@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Lisa Streit</td>
<td>LDEO, Columbia University, USA</td>
<td>martins@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Martin Stute</td>
<td>LDEO/Barnard College, USA</td>
<td>mts@bgs.ac.uk</td>
</tr>
<tr>
<td>Michael Styles</td>
<td>British Geological Survey, UK</td>
<td>paola.tartarotti@unimi.it</td>
</tr>
<tr>
<td>Paola Tartarotti</td>
<td>Universita di Milano, Italy</td>
<td>itiago@ci.uc.pt</td>
</tr>
<tr>
<td>Igor Tiago</td>
<td>Universidade de Coimbra, Portugal</td>
<td>tolstoy@ldeo.columbia.edu</td>
</tr>
<tr>
<td>Maya Tolstoy</td>
<td>LDEO, Columbia University, USA</td>
<td>masako.tominaga@gmail.com</td>
</tr>
<tr>
<td>Masako Tominaga</td>
<td>Michigan State University, USA</td>
<td>tutol001@umn.edu</td>
</tr>
<tr>
<td>Benjamin Tutolo</td>
<td>University of Minnesota, USA</td>
<td>warrenj@stanford.edu</td>
</tr>
<tr>
<td>Jessica Warren</td>
<td>Stanford University, USA</td>
<td></td>
</tr>
<tr>
<td>first name</td>
<td>last name</td>
<td>position</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Ali</td>
<td>Al Rajhi</td>
<td>Assistant Director General of Minerals; Director, Geological Survey</td>
</tr>
<tr>
<td>Shoji</td>
<td>Arai</td>
<td>Professor</td>
</tr>
<tr>
<td>Wolfgang</td>
<td>Bach</td>
<td>Professor</td>
</tr>
<tr>
<td>Donna</td>
<td>Blackman</td>
<td>Research Geophysicist</td>
</tr>
<tr>
<td>Françoise</td>
<td>Boudier</td>
<td>Emeritus Professor</td>
</tr>
<tr>
<td>Georges</td>
<td>Ceuleneer</td>
<td>Directeur de Recherche</td>
</tr>
<tr>
<td>Laurence</td>
<td>Coogan</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Kathryn</td>
<td>Gillis</td>
<td>Professor</td>
</tr>
<tr>
<td>Margot</td>
<td>Godard</td>
<td>Chargé de Recherche</td>
</tr>
<tr>
<td>Steve</td>
<td>Goldstein</td>
<td>Professor</td>
</tr>
<tr>
<td>Phillipe</td>
<td>Gouze</td>
<td>Chargé de Recherche</td>
</tr>
<tr>
<td>Greg</td>
<td>Hirth</td>
<td>Professor</td>
</tr>
<tr>
<td>Al</td>
<td>Hofmann</td>
<td>Emeritus Professor</td>
</tr>
<tr>
<td>Benoit</td>
<td>Ildefonse</td>
<td>Directeur de Recherche</td>
</tr>
<tr>
<td>Bjorn</td>
<td>Jamtveit</td>
<td>Professor</td>
</tr>
<tr>
<td>Peter</td>
<td>Kelemen</td>
<td>Arthur D. Storke Professor</td>
</tr>
<tr>
<td>Frieder</td>
<td>Klein</td>
<td>Assistant Scientist</td>
</tr>
<tr>
<td>Jürgen</td>
<td>Koepke</td>
<td>Professor</td>
</tr>
<tr>
<td>Charles</td>
<td>Langmuir</td>
<td>Professor</td>
</tr>
<tr>
<td>Chris</td>
<td>MacLeod</td>
<td>Professor</td>
</tr>
<tr>
<td>Craig</td>
<td>Manning</td>
<td>Professor, Chair of Dept.</td>
</tr>
<tr>
<td>Jürg</td>
<td>Matter</td>
<td>Associate Lamont Research Professor</td>
</tr>
<tr>
<td>Katsu</td>
<td>Michibayashi</td>
<td>Professor</td>
</tr>
<tr>
<td>Jay</td>
<td>Miller</td>
<td>Adjunct Professor, Manager of Technical & Analytical Services</td>
</tr>
<tr>
<td>Sumio</td>
<td>Miyashita</td>
<td>Professor</td>
</tr>
<tr>
<td>Sobhi</td>
<td>Nasir</td>
<td>Professor, Head of Dept.</td>
</tr>
<tr>
<td>Adolphhe</td>
<td>Nicolas</td>
<td>Emeritus Professor</td>
</tr>
<tr>
<td>Phillipe</td>
<td>Pézard</td>
<td>Directeur de Recherche</td>
</tr>
<tr>
<td>Barbara</td>
<td>Sherwood Lollar</td>
<td>Canada Research Chair, University Professor</td>
</tr>
<tr>
<td>Everett</td>
<td>Shock</td>
<td>Professor</td>
</tr>
<tr>
<td>Satish</td>
<td>Singh</td>
<td>Professor</td>
</tr>
<tr>
<td>Eric</td>
<td>Somnenthal</td>
<td>Staff Geological Scientist</td>
</tr>
<tr>
<td>Eiichi</td>
<td>Takazawa</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Damon</td>
<td>Teagle</td>
<td>Professor</td>
</tr>
<tr>
<td>Susumu</td>
<td>Umino</td>
<td>Professor</td>
</tr>
<tr>
<td>Jessica</td>
<td>Warren</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Wenlu</td>
<td>Zhu</td>
<td>Associate Professor</td>
</tr>
</tbody>
</table>